Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581188

RESUMEN

Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.

2.
Plant Physiol ; 194(4): 2724-2738, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38198213

RESUMEN

Global warming is an adverse environmental factor that threatens crop yields and food security. 2C-type protein phosphatases (PP2Cs), as core protein phosphatase components, play important roles in plant hormone signaling to cope with various environmental stresses. However, the function and underlying mechanism of PP2Cs in the heat stress response remain elusive in tropical crops. Here, we report that MePP2C1 negatively regulated thermotolerance in cassava (Manihot esculenta Crantz), accompanied by the modulation of reactive oxygen species (ROS) accumulation and the underlying antioxidant enzyme activities of catalase (CAT) and ascorbate peroxidase (APX). Further investigation found that MePP2C1 directly interacted with and dephosphorylated MeCAT1 and MeAPX2 at serine (S) 112 and S160 residues, respectively. Moreover, in vitro and in vivo assays showed that protein phosphorylation of MeCAT1S112 and MeAPX2S160 was essential for their enzyme activities, and MePP2C1 negatively regulated thermotolerance and redox homeostasis by dephosphorylating MeCAT1S112 and MeAPX2S160. Taken together, this study illustrates the direct relationship between MePP2C1-mediated protein dephosphorylation of MeCAT1 and MeAPX2 and ROS accumulation in thermotolerance to provide insights for adapting to global warming via fine-tuning thermotolerance of the tropical crop cassava.


Asunto(s)
Manihot , Termotolerancia , Antioxidantes , Manihot/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Monoéster Fosfórico Hidrolasas
3.
Plant Physiol ; 194(2): 1218-1232, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874769

RESUMEN

Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.


Asunto(s)
Manihot , Melatonina , Virus del Mosaico , Potexvirus , Resistencia a la Enfermedad/genética , Manihot/genética , Manihot/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Potexvirus/genética , Melatonina/metabolismo , Enfermedades de las Plantas/genética
4.
Int J Biol Macromol ; 253(Pt 8): 127665, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37884236

RESUMEN

Carotenoids are essential and beneficial substances for both plant and human health. Identifying the regulatory network of these pigments is necessary for improving fruit quality and commodity value. In this study, we performed integrative analyses of transcriptome data from two different type fruits, ripening peel color at green ('Neelum' mango) and red ('Irwin' mango). Specifically, we found that MiMYB10 transcription level was highly associated with mango peel color. Further, silencing MiMYB10 homologous gene in tomato fruits resulted in lower carotenoid and anthocyanin content. Electrophoretic mobility shift assays and dual-luciferase clarified that MiMYB10 regulates the carotenoid biosynthesis gene MiPDS (phytoene desaturase gene) in a direct manner. On the other hand, MiMYB10 activates the expression of carotenoid biosynthesis genes (PSY, Z-ISO, CRTISO, LCYE) and chlorophyll degradation gene (SGR1), promoting the accumulation of carotenoid, accelerating chlorophyll degradation, and controlling peel color. In summary, this study identified important roles of MiMYB10 in pigment regulatory and provided new options for breeding strategies aiming to improve fruit quality.


Asunto(s)
Mangifera , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frutas/metabolismo , Mangifera/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Carotenoides/metabolismo , Clorofila/genética , Clorofila/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Pineal Res ; 74(3): e12861, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36750349

RESUMEN

Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.


Asunto(s)
Manihot , Melatonina , Melatonina/metabolismo , Histonas/genética , Histonas/metabolismo , Manihot/genética , Manihot/metabolismo , Resistencia a la Enfermedad/genética , Epigénesis Genética , Plantas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Cell Environ ; 46(2): 635-649, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36451539

RESUMEN

Cassava bacterial blight (CBB) is one of the most serious diseases in cassava production, so it is essential to explore the underlying mechanism of immune responses. Histone acetylation is an important epigenetic modification, however, its relationship with cassava disease resistance remains unclear. Here, we identified 10 histone acetyltransferases in cassava and found that the transcript of MeHAM1 showed the highest induction to CBB. Functional analysis showed that MeHAM1 positively regulated disease resistance to CBB through modulation of salicylic acid (SA) accumulation. Further investigation revealed that MeHAM1 directly activated SA biosynthetic genes' expression via promoting lysine 9 of histone 3 (H3K9) acetylation and lysine 5 of histone 4 (H4K5) acetylation of these genes. In addition, molecular chaperone MeDNAJA2 physically interacted with MeHAM1, and MeDNAJA2 also regulated plant immune responses and SA biosynthetic genes. In conclusion, this study illustrates that MeHAM1 and MeDNAJA2 confer immune responses through transcriptional programming of SA biosynthetic genes via histone acetylation. The MeHAM1 & MeDNAJA2-SA biosynthesis module not only constructs the direct relationship between histone acetylation and cassava disease resistance, but also provides gene network with potential value for genetic improvement of cassava disease resistance.


Asunto(s)
Manihot , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistencia a la Enfermedad/genética , Histonas/metabolismo , Manihot/genética , Manihot/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Lisina/metabolismo , Acetilación
8.
Plant J ; 112(5): 1212-1223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36239073

RESUMEN

As one of the most important food crops, cassava (Manihot esculenta) is the main dietary source of micronutrients for about 1 billion people. However, the ionomic variation in cassava and the underlying genetic mechanisms remain unclear so far. Herein, genome-wide association studies were performed to reveal the specific single nucleotide polymorphisms (SNPs) that affect the ionomic variation in cassava. We identified 164 SNPs with P-values lower than the threshold located in 88 loci associated with divergent ionomic variations. Among them, 13 SNPs are related to both calcium (Ca) and magnesium (Mg), and many loci for different ionomic traits seem to be clustered on specific chromosome regions. Moreover, we identified the peak SNPs in the promoter regions of Sc10g003170 (encoding methionyl-tRNA synthetase [MetRS]) and Sc18g015190 (encoding the transcriptional regulatory protein AlgP) for nitrogen (N) and phosphorus (P) accumulation, respectively. Notably, these two SNPs (chr10_32807962 and chr18_31343738) were directly correlated with the transcript levels of Sc10g003170 (MetRS) and Sc18g015190 (AlgP), which positively modulated N accumulation and P concentration in cassava, respectively. Taken together, this study provides important insight into the genetic basis of cassava natural ionomic variation, which will promote genetic breeding to improve nutrient use and accumulation of elements in cassava.


Asunto(s)
Manihot , Manihot/genética , Manihot/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Variación Genética
10.
Plant J ; 111(3): 683-697, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608142

RESUMEN

Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.


Asunto(s)
Manihot , Melatonina , Xanthomonas , Resistencia a la Enfermedad/genética , Etilenos/metabolismo , Manihot/genética , Manihot/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/metabolismo
11.
J Pineal Res ; 73(1): e12804, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35488179

RESUMEN

Melatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed. In this study, a genome-wide association study using cassava natural population of 298 genetic resources identified melatonin accumulation 1 (MA1), which regulates the natural variation of melatonin levels in cassava. We found that MA1 encodes type 2C protein phosphatase 1 (PP2C1), which serves as a negative regulator of melatonin levels in cassava. MePP2C1 physically interacts with MeRAV1/2 and MeWRKY20 and dephosphorylates them at serine (S) 35 residue, S34 residue, and S176 residue, respectively, thereby hindering their transcriptional activation on downstream melatonin biosynthetic genes. Notably, MePP2C1 interacts with phytomelatonin receptor MePMTR1 and dephosphorylates it at S11 residue, repressing its binding to melatonin. In summary, this study demonstrates that MePP2C1 as MA1 plays dual roles in negatively regulating both melatonin accumulation and signaling, extending the understanding of the molecular mechanism underlying melatonin accumulation and signaling through forward genetics in plants.


Asunto(s)
Manihot , Melatonina , Animales , Ritmo Circadiano , Estudio de Asociación del Genoma Completo , Manihot/genética , Melatonina/metabolismo , Plantas/metabolismo
12.
J Exp Bot ; 73(17): 5874-5885, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35298631

RESUMEN

Melatonin is an essential phytohormone in the regulation of many plant processes, including during plant development and in response to stress. Pathogen infections cause serious damage to plants and reduce agricultural production. Recent studies indicate that melatonin plays important roles in alleviating bacterial, fungal, and viral diseases in plants and post-harvest fruits. Herein, we summarize information related to the effects of melatonin on plant disease resistance. Melatonin, reactive oxygen species, and reactive nitrogen species form a complex loop in plant-pathogen interaction to regulate plant disease resistance. Moreover, crosstalk of melatonin with other phytohormones including salicylic acid, jasmonic acid, auxin, and abscisic acid further activates plant defense genes. Melatonin plays an important role not only in plant immunity but also in alleviating pathogenicity. We also summarize the known processes by which melatonin mediates pathogenicity via negatively regulating the expression levels of genes related to cell viability as well as virulence-related genes. The multiple mechanisms underlying melatonin influences on both plant immunity and pathogenicity support the recognition of the essential nature of melatonin in plant-pathogen interactions, highlighting phytomelatonin as a critical molecule in plant immune responses.


Asunto(s)
Melatonina , Reguladores del Crecimiento de las Plantas , Ácido Abscísico/metabolismo , Resistencia a la Enfermedad , Ácidos Indolacéticos/metabolismo , Melatonina/metabolismo , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo
13.
Plant J ; 110(5): 1447-1461, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35352421

RESUMEN

Reactive oxygen species (ROS) overproduction leads to oxidative damage under almost all stress conditions. Lesion-Simulating Disease (LSD), a zinc finger protein, is an important negative regulator of ROS accumulation and cell death in plants. However, the in vivo role of LSD in cassava (Manihot esculenta) and the underlying molecular mechanisms remain elusive. Here, we found that MeLSD3 is essential for the oxidative stress response in cassava. MeLSD3 physically interacted with ascorbate peroxidase 2 (MeAPX2), thereby promoting its enzymatic activity. In addition, MeLSD3 also interacted with the nuclear factor YC15 (MeNF-YC15), which also interacted with nuclear factor YA2/4 (MeNF-YA2/4) and nuclear factor YB18 (MeNF-YB18) to form an MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex. Notably, MeLSD3 positively modulated the transcriptional activation of the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex by interacting with the CCAAT boxes of the promoters of glutathione S-transferases U37/U39 (MeGST-U37/U39), activating their transcription. When one or both of MeLSD3 and the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex were co-silenced, cassava showed decreased oxidative stress resistance, while overexpression of MeGST-U37/U39 alleviated the oxidative stress-sensitive phenotype of these silenced plants. This study illustrates the dual roles of MeLSD3 in promoting MeAPX2 activity and MeNF-YC15-MeGST-U37/U39 regulation, which underlie the oxidative stress response in cassava.


Asunto(s)
Manihot , Manihot/genética , Manihot/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
14.
J Pineal Res ; 72(2): e12784, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34936113

RESUMEN

Melatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants. In this study, we found that N-acetylserotonin O-methyltransferase 2 (MeASMT2) physically interacted with MePR1 in vitro and in vivo, thereby promoting the anti-bacterial activity of MePR1 against Xanthomonas axonopodis pv. manihotis (Xam). Consistently, MeASMT2 improved the effect of MePR1 on positively regulating cassava disease resistance. In addition, we found that type 2C protein phosphatase 1 (MePP2C1) interacted with MeASMT2 to interfere with MePR1-MeASMT2 interaction, so as to inhibiting the effect of MeASMT2 and MePR1 on positively regulating cassava disease resistance. In contrast to the increased transcripts of MeASMT2 and MePR1 in response to Xam infection, the transcript of MePP2C1 was decreased upon Xam infection. Therefore, disease activated MeASMT2 was released from disease inhibited MePP2C1, so as to improving the anti-bacterial activity of MePR1, resulting in improved immune response. In summary, this study illustrates the dynamic modulation of the MePP2C1-MeASMT2-MePR1 module on cassava defense response against cassava bacterial blight (CBB), extending the understanding of the correlation between melatonin biosynthetic enzyme and PR in plants.


Asunto(s)
Manihot , Melatonina , Resistencia a la Enfermedad , Humanos , Melatonina/metabolismo , Enfermedades de las Plantas/microbiología
15.
Plant Physiol Biochem ; 171: 66-74, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971956

RESUMEN

The phyllosphere is one of the most abundant habitats for global microbiota. The ionome is the composition of mineral elements in plants. The correlation between phyllosphere microbiota and the ionome remains elusive in plants, especially in the most important tropical crop cassava. In this study, microbiome-wide association studies (MWASs) of thirty varieties were performed to reveal the association between phyllosphere microbiota and ionomic variations in cassava. Annotation of metagenomic species identified some species that were significantly correlated with ionomic variations in cassava. Among them, Lactococcus lactis abundance was negatively associated with leaf aluminium (Al) levels but positively related to leaf potassium (K) levels. Notably, both the reference and isolated L. lactis showed strong binding capacity to Al. Further bacterial transplantation of isolated L. lactis could significantly decrease endogenous Al levels but increase K levels in cassava, and it can also lead to increased citric acid and lactic acid levels as well as higher transcript levels of K uptake-related genes. Taken together, this study reveals the involvement of phyllosphere microbiota in ionomic variation in cassava, and the correlation between L. lactis abundance and Al and K levels provides novel insights into alleviating Al accumulation and promoting K uptake simultaneously.


Asunto(s)
Lactococcus lactis , Manihot , Microbiota , Aluminio , Manihot/genética , Simbiosis
16.
Cell Rep ; 37(11): 110119, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34910906

RESUMEN

Related to ABI3/VP1 (RAV) transcription factors have important roles in plant stress responses; however, it is unclear whether RAVs regulates oxidative stress response in cassava (Manihot esculenta). In this study, we report that MeRAV1/2 positively regulate oxidative stress resistance and catalase (CAT) activity in cassava. Consistently, RNA sequencing (RNA-seq) identifies three MeCATs that are differentially expressed in MeRAV1/2-silenced cassava leaves. Interestingly, MeCAT6 and MeCAT7 are identified as direct transcriptional targets of MeRAV1/2 via binding to their promoters. In addition, protein kinase MeKIN10 directly interacts with MeRAV1/2 to phosphorylate them at Ser45 and Ser44 residues, respectively, to promote their direct transcriptional activation on MeCAT6 and MeCAT7. Site mutation of MeRAV1S45A or MeRAV2S44A has no significant effect on the activities of MeCAT6 and MeCAT7 promoters or on oxidative stress resistance. In summary, this study demonstrates that the phosphorylation of MeRAV1/2 by MeKIN10 is essential for its direct transcriptional activation of MeCAT6/7 in response to oxidative stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Manihot/metabolismo , Estrés Oxidativo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Manihot/genética , Manihot/crecimiento & desarrollo , Fosforilación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Transcripción/genética
17.
Genome Biol ; 22(1): 316, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784936

RESUMEN

BACKGROUND: Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome. RESULTS: We describe a genomic variation map from 388 resequenced genomes of cassava cultivars and wild accessions. We identify 52 loci for 23 agronomic traits through a genome-wide association study. Eighteen allelic variations in heterozygosity for nine candidate genes are significantly associated with seven key agronomic traits. We detect 81 selective sweeps with decreasing heterozygosity and nucleotide diversity, harboring 548 genes, which are enriched in multiple biological processes including growth, development, hormone metabolisms and responses, and immune-related processes. Artificial selection for decreased heterozygosity has contributed to the domestication of the large starchy storage root of cassava. Selection for homozygous GG allele in MeTIR1 during domestication contributes to increased starch content. Selection of homozygous AA allele in MeAHL17 is associated with increased storage root weight and cassava bacterial blight (CBB) susceptibility. We have verified the positive roles of MeTIR1 in increasing starch content and MeAHL17 in resistance to CBB by transient overexpression and silencing analysis. The allelic combinations in MeTIR1 and MeAHL17 may result in high starch content and resistance to CBB. CONCLUSIONS: This study provides insights into allelic variation in heterozygosity associated with key agronomic traits and cassava domestication. It also offers valuable resources for the improvement of cassava and other highly heterozygous crops.


Asunto(s)
Domesticación , Variación Genética , Manihot/genética , Análisis de Secuencia de ADN , Mapeo Cromosómico , Productos Agrícolas/genética , Proteínas de Unión al ADN/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Proteínas Nucleares/genética , Fenotipo , Filogenia , Proteínas de Plantas/genética
18.
Plant Physiol Biochem ; 167: 430-437, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34411782

RESUMEN

Cassava is a food crop and an important energy crop worldwide. However, its yield and quality are easily affected by low K+ stress, and the molecular mechanism of potassium channel is unknown in cassava. Herein, we revealed that calcineurin B-like 1/9 (MeCBL1/9)-CBL-interacting protein kinase 23 (MeCIPK23)-K+ TRANSPORTER1 (MeAKT1) complex plays an important role in low potassium response in cassava. Firstly, this study verified the in vivo role of MeAKT1 in K+ uptake in yeast. Secondly, we found that MeCBL1, MeCBL9, MeCIPK23 and MeAKT1 are involved in the absorption of K+ in cassava, and MeCBL1/9-CIPK23 complex is essential for MeAKT1-mediated K+ uptake. Moreover, MeCBL1/9-MeCIPK23-MeAKT1 showed different expression in different cassava varieties contrasting in the resistance to low K+ stress. Taken together, this study provides new insights into further improvement of K+ uptake in cassava.


Asunto(s)
Manihot , Proteínas de Plantas/metabolismo , Potasio , Proteínas de Unión al Calcio/metabolismo , Manihot/genética , Manihot/metabolismo , Potasio/metabolismo , Canales de Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
19.
Plant J ; 107(3): 925-937, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34037995

RESUMEN

Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein-protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex-mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex in autophagy-mediated disease resistance to CBB.


Asunto(s)
Autofagia/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Manihot/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Proteínas HSP90 de Choque Térmico/genética , Manihot/metabolismo , Chaperonas Moleculares , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , /metabolismo , Técnicas del Sistema de Dos Híbridos , Xanthomonas axonopodis
20.
Plant J ; 107(3): 847-860, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34022096

RESUMEN

Cassava, an important food and energy crop, is relatively more resistant to drought stress than other crops. However, the molecular mechanism underlying this resistance remains elusive. Herein, we report that silencing a drought stress-responsive transcription factor MeRAV5 significantly reduced drought stress resistance, with higher levels of hydrogen peroxide (H2 O2 ) and less lignin during drought stress. Yeast two-hybrid, pull down and bimolecular fluorescence complementation (BiFC) showed that MeRAV5 physically interacted with peroxidase (MePOD) and lignin-related cinnamyl alcohol dehydrogenase 15 (MeCAD15) in vitro and in vivo. MeRAV5 promoted the activities of both MePOD and MeCAD15 to affect H2 O2 and endogenous lignin accumulation respectively, which are important in drought stress resistance in cassava. When either MeCAD15 or MeRAV5 was silenced, or both were co-silenced, cassava showed lower lignin content and drought-sensitive phenotype, whereas exogenous lignin alkali treatment increased drought stress resistance and alleviated the drought-sensitive phenotype of these silenced cassava plants. This study documents that the modulation of H2 O2 and lignin by MeRAV5 is essential for drought stress resistance in cassava.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas/fisiología , Lignina/metabolismo , Manihot/metabolismo , Proteínas de Plantas/metabolismo , Silenciador del Gen , Peróxido de Hidrógeno , Manihot/efectos de los fármacos , Proteínas de Plantas/genética , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...